

the 10th SFCi meetings

IMPROVING SAR ANALYSIS VIA PHARMACOPHORIC FEATURE REDUCTION AND FEATURE TRANSFORMATION

Hajar Rehioui^{1,*}, Abdelkader Ouali¹, Christophe Couronne¹, Jean-Luc Lamotte², Alban Lepailleur², Jean-Luc Manguin¹, Ronan Bureau², Albrecht Zimmermann¹, Bertrand Cuissart¹

¹GREYC, Normandie Univ., UNICAEN, CNRS – UMR 6072, 14000 Caen, France

²Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

*hajar.rehioui-karine@unicaen.fr

Our work is part of the European project "SCHISM", funded by the European Union within the framework of the Operational Programme ERDF/ESF 2014-2020

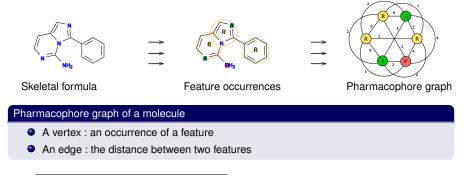
01 October 2021

Objective Pharmacophoric structure Adopted Pharmacophoric vision

our work

General goal

- Structure-activity relationship (SAR) analysis :
 - Cleaning data, searching suitable representation.
 - Clustering ligands by family, finding out activity cliffs.


data

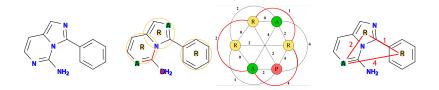
- 1485 ligands ¹ tested on tyrosine kinase BCR-ABL, often found in patients with chronic myeloid leukemia.
- Each ligand is defined by 112048 pharmacophores (order varying from 3 to 7)
- Two classes : 711 ligands from inactive class and 774 ligands from active class.
- Activity of ligand :
 - $K_i \leq 100 nM \implies$ active
 - $K_i \ge 1000 nM \implies$ inactive
 - otherwise not considered

^{1.} GAULTON, Anna, HERSEY, Anne, NOWOTKA, Michal, et al. The ChEMBL database in 2017. Nucleic acids research, 2017, vol. 45, no D1, p. D945-D954.

Pharmacophoric features²

Hydrogen Bond Acceptor, Hydrogen Bond Donor, aromatic Ring, Hydrophobic area, Positively ionizable group, Negatively ionizable group

^{2.} OpenBabel, N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminformatics 2011, 3, 33.


Hajar Rehioui

10th SFCi meeting

Objective Pharmacophoric structure Adopted Pharmacophoric vision our work

pharmacophore

- fragment of the overall pharmacophore graph of the ligand responsible of its biological activity (active or inactive).
- sufficiently present (e.g., appearing in at least 10 ligands)

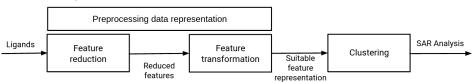
General context

Processing Clustering Results Conclusion Objective Pharmacophoric structure Adopted Pharmacophoric vision our work

Pharmacophoric fingerprint

file Bipeline selected Boxes Help		
Box Type		
	tract Phd	-
Auffer File	··· • •	0
	-	
7 2 Molecula		
T Input/Deput		
- SD# Reader		
L SOF Writer		
V 2 - Annotate		
- Hiter Annococors		
Phagemens Pharmaconberic Preduces		
▼ 3-riber		
With Descriptors		
- with Fragments		
- with us		
▼ 4 - Set Operator		
- Ofference		
- Information		
Viteo		
▼ 5-Vit & Tools		
Analogue		
- Atom Pair Sinilarity		
Oversky Osta	Reset Rox	Delete
- QMAR Output He	HESEC BOX	Device
y 3- Pettern		
▼ 1. Intelliging		
TXT Reader Description This box handlas a Fiel location. This file will be open in write mode.		
TXT Writer		
▼ 2-Extract		
- bitset - Satast2 filesame save.bit		Modify Show
- Extract2 filename save.bit		mouly Show
* 3 - HERE		
Done in: 60min 07sec.		

The workflow to extract the pharmacophores by Norns³ tools

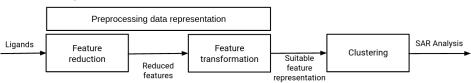

ld_Mol	A A A -0	R A R -1	A A R -2	 D D H H N N N -112047
CHEMBL250213	1	0	0	 1

^{3.} METIVIER, Jean-Philippe, CUISSART, Bertrand, BUREAU, Ronan, et al. The pharmacophore network : a computational method for exploring structure–activity relationships from a large chemical data set. Journal of medicinal chemistry, 2018, vol. 61, no 8, p. 3551-3564.

Hajar Rehioui

General context Processing Clustering Results Conclusion	Objective Pharmacophoric structure Adopted Pharmacophoric vision our work
--	--

Work process

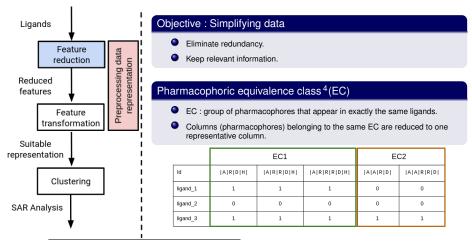

Experimental environment

Programming language and frameworks

- Ianguage : python.
- frameworks : Keras, tensorflow, sklearn.

General context Processing Clustering Results Conclusion	Objective Pharmacophoric structure Adopted Pharmacophoric vision our work
--	--

Work process


Experimental environment

Processors	Cores	RAM	GPU	Disk space
2 Processors Intel Xeon E5-2680 v2 2.80GHz	40	512 G	2 Tesla K40M 2880 Cores 12G RAM	9.9 T

Programming language and frameworks

- Ianguage : python.
- frameworks : Keras, tensorflow, sklearn.

Feature reduction Feature transformation

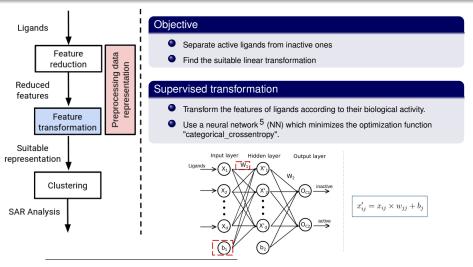
4. FOURNIER-VIGER, Philippe, GUENICHE, Ted, ZIDA, Souleymane, et al. ERMiner : sequential rule mining using equivalence classes. In : International Symposium on Intelligent Data Analysis. Springer, Cham, 2014. p. 108-119.

10th SFCi meeting

General context Processing Clustering Results	Feature reduction Feature transformation
Conclusion	

Reduction of 86.50%

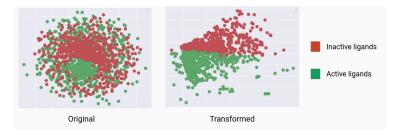
#ligands	# old features	# new features	Type of data	#classes
1485	112048	15129	binary (0, 1)	2


• Example of pharmacophoric equivalence classes

EC	number_of_ph	concept_score
A A R D H N -6279(5316	12
A A A R R H H -853	3889	13
A A A R D D H -874	3552	10
A A A D H H -5283(3515	10
A A A R R H -48532	1527	12
A R R H -13429	1443	11
A A R D -8476	1153	20
A R R H P P -71742	1094	12
A R R R D H -67146	1047	12
A A A A R P -45904	1000	10

• 11577 EC contain one pharmacophore, 3552 EC contain more than one

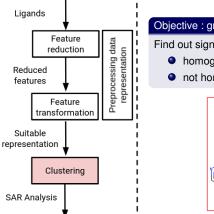
10th SFCi meeting


General context
Processing
Clustering
Results
Conclusion
Feature transformation

5. BEBIS, George et GEORGIOPOULOS, Michael. Feed-forward neural networks. IEEE Potentials, 1994, vol. 13, no 4, p. 27-31.

10th SFCi meeting

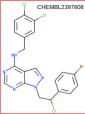
Feature reduction Feature transformation

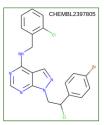


Visualization of 2D projection

The 15129 features are projected by the Multidimentional Scaling ⁶(MDS) method.

^{6.} COX, Michael AA et COX, Trevor F. Multidimensional scaling. In : Handbook of data visualization. Springer, Berlin, Heidelberg, 2008. p. 315-347.

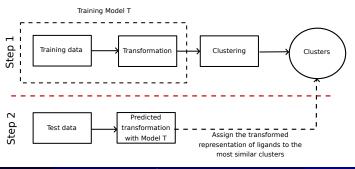

Clustering in SAR analysis Predictive clustering



Objective : group together similar structures

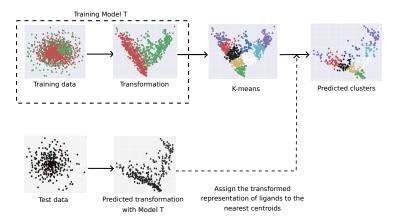
Find out significant ligands

- homogeneous : families of biological activities .
- not homogeneous : potential presence of activity cliffs.

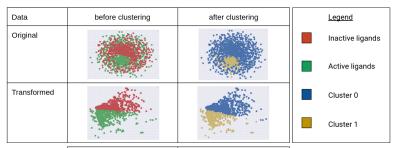

Clustering in SAR analysis Predictive clustering

Objective

Predict the cluster (family) of a new unlabeled ligand.


Principle

- Apply one of the clustering methods on the training set after its transformation
- Assign to each cluster built in step (1) the data that corresponds to it (the most similar)



Clustering in SAR analysis Predictive clustering

Example : Predictive K -means

General context	
Processing	Feature transformation
Clustering	Predictive clustering
Results	SAR analysis
Conclusion	

	Orig	jinal	Transformed	
	Cluster 0	Cluster 1	Cluster 0	Cluster 1
Inactive (711)	711 (100%)	0 (0%)	710 (99.86%)	1 (0.14%)
Active (774)	450 (58.14%)	324 (41.86%)	197 (25.45%)	577 (74.55%)

Evaluation

Evaluation by normalized mutual information ⁷(NMI)

quality measure which compares the resulting clusters or classes with the ground truth.

The results vary between 0 (no mutual information) and 1 (perfect correlation)

Evaluation by Silhouette 8

measure calculated using the mean intra-cluster distance and the mean distance to the nearest cluster.

The best value is 1 and the worst is -1. Values close to 0 indicate that the clusters overlap. Negative values usually indicate that a sample was assigned to the wrong cluster.

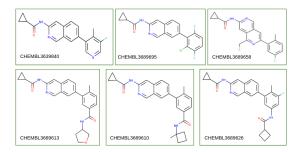
 ESTEVEZ, Pablo A., TESMER, Michel, PEREZ, Claudio A., et al. Normalized mutual information feature selection. IEEE Transactions on neural networks, 2009, vol. 20, no 2, p. 189-201.

8. ROUSSEEUW, Peter J. Silhouettes : a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987, vol. 20, p. 53-65.

Hajar Rehioui

10th SFCi meeting

Feature transformation Predictive clustering SAR analysis

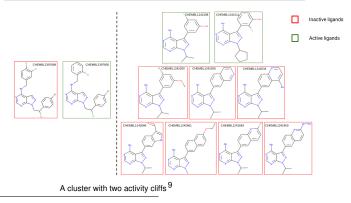

Choice of the number of clusters K

	Data	NMI	Silhouette	misclassified ligands		
K=2	Original	0.287	0.056	89		
	Transformed	0.449	0.395	46		
K=3	Original	0.229	0.073	89		
	Transformed	0.371	0.354	53		
K=4	Original	0.288	0.081	80		
	Transformed	0.341	0.401	57		
K=5	Original	0.245	0.092	79		
	Transformed	0.359	0.378	51		
К=6	Original	0.246	0.099	75		
11-0	Transformed	0.291	0.356	58		

	Data	NMI	Silhouette	misclassified ligands		
K=7	Original	0.240	0.090	78		
	Transformed	0.299	0.354	53		
K=8	Original	0.230	-0.109	72		
	Transformed	0.326	0.387	36		
K=9	Original	0.222	0.109	74		
	Transformed	0.334	0.398	39		
K=10	Original	0.223	0.119	69		
	Transformed	0.307	0.374	43		

General context	
Processing	Feature transformation
Clustering	Predictive clustering
Results	SAR analysis
Conclusion	

test data		Original										Transformed						
Inactive (142)	0	111	1	1	1	1	5	22	0	21	6	0	64	0	30	0	13	8
Active (155)	60	52	4	4	1	11	1	17	5	14	41	48	7	10	8	6	18	3



General context Processing Clustering Results

Feature transformation Predictive clustering SAR analysis

Conclusion

test data		Original									Transformed								
Inactive (142	0		111	1	1	1	1	5	22	0	21	6	0	64	0	30	0	13	8
Active (155)	6	0	52	4	4	1	11	1	17	5	14	41	48	7	10	8	6	18	3

9. STUMPFE, Dagmar, HU, Huabin, et BAJORATH, Jürgen. Evolving concept of activity cliffs. ACS omega, 2019, vol. 4, no 11, p. 14360-14368.

10th SFCi meeting

Conclusion

Allowing to an expert an easy SAR analysis by :

preprocessing step : data cleaning.

Clustering step : significant ligands, activity cliffs.

Perspectives

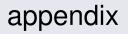
- Significant pharmacophores : analyse pharmacophores by "feature importance" study.
- Unsupervised transformation : transform unlabeled data. ٠
- ۲ Interactivity : introduce the expert in the process.

the 10th SFCi meetings

IMPROVING SAR ANALYSIS VIA PHARMACOPHORIC FEATURE REDUCTION AND FEATURE TRANSFORMATION

Hajar Rehioui^{1,*}, Abdelkader Ouali¹, Christophe Couronne¹, Jean-Luc Lamotte², Alban Lepailleur², Jean-Luc Manguin¹, Ronan Bureau², Albrecht Zimmermann¹, Bertrand Cuissart¹

¹GREYC, Normandie Univ., UNICAEN, CNRS – UMR 6072, 14000 Caen, France


²Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

*hajar.rehioui-karine@unicaen.fr

Our work is part of the European project "SCHISM", funded by the European Union within the framework of the Operational Programme ERDF/ESF 2014-2020

01 October 2021

Hajar Rehioui

Predictive clustering cross validation

			Original		Transformed						
before clustering											
K-means results						N. A.					
NMI	0.277	0.260	0.264	0.287	0.236	0.353	0.346	0.376	0.297	0.327	
silhouette	0.185	0.126	0.121	0.210	0.189	0.466	0.438	0.453	0.496	0.466	